Programming Fundamentals 2

[]
Pierre Talbot ll Il I I II
°

6 May 2021 -
UNIVERSITE DU
University of Luxembourg LUXEMBOURG

Chapter X. Design Pattern

Design pattern

Design Patterns

3

) , g
e A design pattern is a reusable Elements of Reusable z
. . . z
general solution to a software Object-Oriented Software s
bl Erich Gamma 7
problem. Richard Helm 2
. Ralph Johnson)

e A way to organise the code to John VSRS

increase flexibility, reusability,
maintainability,

e Generally based on inheritance,

Foreword by Grady Booch

subtype polymorphism, and
interfaces.

Why are design patterns interesting?

e Introduce a common vocabulary among developers: make it easier
to understand the code.

e They are robust solutions, designed over the years by expert
developers.

e Extensible and modular: weak coupling between software

components.

Classification of design patterns

1. Creational patterns: to build an object when it is complicated
(e.g., to “help” the constructor).

e factory, AbstractFactory, Builder, ...
e ASCIIBattlefieldBuilder builds Battlefield.

2. Structural patterns: to extend a class with functionalities without
modifying it.
e Adapter, Facade, Decorator, Proxy, Composite, ...

3. Behavioral patterns: to introspect an object and/or customized its
behavior.
e [terator, Observer, Strategy, Visitor, ...
e TileVisitor allows us to visit the tiles of the battlefield.

A selection of design patterns

We discuss five design patterns:

Builder pattern: used in LOL 2D.
Composite pattern: used in Calculator and MC (lab 4).
Facade pattern: used in LOL 2D.
Visitor pattern: used in LOL 2D.

@~ N

Observer pattern: should be used in LOL 2D.

Builder Design Pattern

Builder Pattern: Inte

Separate the construction of a complex object from its represen-
tation so that the same construction process can create different
representations.

Motivation: Maze Builder

MazeBuilder
MazeGame <> . .
addDoor(from: int, to: int)
construct() addRooz(i: int) A
for(inti=0;i<10; ++i) { . . .
CountingMazeBuilder StandardMazeBuilder

builder.addRoom(i);

addDoor(from: int, to: int)
addRoom(i: int)

build(): Maze

addDoor(from: int, to: int)
addRoom(i: int)
build(): int

}
builder.addDoor(0,1);
builder.addDoor(1,2);

int Maze

General case: Builder design pattern

Director o

construct()

for(inti = 0; i < 10; ++i) {
builder.buildPart1();

}
builder.buildPart2();

Builder
buildPart1()
buildPart2()

N

ConcreteBuilder

buildPart1() > Product

buildPart2()

build(): Product

A restricted usage in LOL 2D

ASClIBattlefieldBuilder
LoL2D
-buildGround()

main() -buildbuildDestructible
+build(): Battlefield

ASCliBattlefieldBuilder battlefieldBuilder = V]
new ASClIBattlefieldBuilder();
battlefield = battlefieldBuilder.build(); Battlefield

e Constructing the battlefield with an ASCII file is 100 LOC.

Usage of the builder to separate object construction from the object
itself.

Currently, no need for a Builder interface.

Could be added later when required, e.g., suppose you want to
propose a map editor.

Composite Design Pattern

Compose objects into tree structures to represent part-whole hier-
archies. Composite lets clients treat individual objects and com-
positions of objects uniformly.

Motivation: Calculator

i i 2
Client > «Expression»
evaluate(): int
o A
c
L
°
<
)
Constant Addition
evaluate(): int -left: Expression
-right: Expression
return left.evaluate() + right.evaluate();

Addition(Expression, Expression)
evaluate(): int

A constant or a composition of constants through Addition are

manipulated uniformly through Expression.

10

Motivation: Musical score

Client 5 «Sound» 1"
plaK) A
g
¢
Note Chord

for(Sound s : children) {

play() play(); :
add(Sound s); }5-P|aY().

A note or a composition of notes through Chord are manipulated

uniformly through Sound.

11

General case: Composite design pattern

Client - Component _ *-n

operztion()A

children

¢

Leaf Composite
for(Component c : childen) {
operation() operation() c.operation();
add(Component) }

remove(Component)
child(int): Component

12

Facade Design Pattern

Provide a unified interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that makes the subsystem
easier to use.

T
§ subsystem classes
B

13

Motivation: Al interface

«AlBase»
Client > applyTurn(Turn)

championSelect(): Turn
turn(): Turn

> AttackNexus
SuperAl
applyTurn(Turn)

championSelect(): Turn
turn(): Turn

> ChampionSelector

> DefendNexus

e Each client can implement its own Al, which might be super
sophisticated and involves many components.
e All Als are used in Client the same way, through the facade AIBase

interface. "

Visitor Design Pattern

Represent an operation to be performed on the elements of an
object structure. Visitor lets you define a new operation without
changing the classes of the elements on which it operates.

It is a solution to the Expression problem mentioned in Live coding 4.

15

Motivation: Action on battlefield

«Action» < ActionVisitor
Arena

accept{ActionVisitor)

)
pionselectl...)

ChampionAction ChampionSelect

ApplyAction

visitspawn(.)
visit

Attack Move Spawn

visitor.visitSpawn(teamiD, championiD, x, y);

e An action has an effect on the battlefield (e.g., moving a champion,
attacking a destructible, ...).

e The class Turn has an ArrayList<Action>.

e How to iterate over the list of actions, and know the concrete
subtype?

e The visitor pattern allows us to introspect the actions.

16

Motivation: Tiles of the battlefield

«TileVisitor»
«Destructible» | Client > JisitChampion(Champion c1
VENoxAiNexss

visitGround(GroundTile gfoundTile)
kS

accept(TileVisitor)

Nexus Champion Battlefi i anonymous class»

accept(TileVisitor) | | accept(TileVisitor) tch h)
visitNexus(Nexus n)
VisitGround(GroundTile groundTile)

battlefield.visit(x, y, new TileVisitor(){
public void visitDestructible(Destructible d) { Team
champion.attack(d);

visitor.visitNexusithis);

championAttack()
i

e The battlefield is constituted of different kind of tiles, either ground
or destructible.

e The visitor allows us to introspect a destructible tile.

17

General case: Visitor design pattern

«Visitor»

Client visitConcreteElementA(ConcreteElementA)
visitConcreteElementB(ConcreteElementB)

ConcreteVisitorl ConcreteVisitor2
visitConci onct visitConci

on
visitCon: visitCon: ncrets

ObjectStructure «Element»

accept(Visitor)

ConcreteElementA = ConcreteElementB

accept(Visitor v) accept(Visitor v)

18

Observer Design Pattern

Define a one-to-many dependency between objects so that when
one object changes state, all its dependents are notified and up-
dated automatically.

19

Motivation: Server / Ul communication

for(Player player : players) {
Turn turn = player.askTurn();
arena.applyTurn(turn);

ui.update();
ui
Server > BattlefieldView
gameLoop() update()

battlefield.visitFullMap(this);
scene = new Scene(tiles);
v stage.setScene(scene);

> Battlefield

Currently, the server directly communicates to the Ul.

20

Motivation: Server / Ul observer

notify() { «Subject»
. observer 0..n
foor(l?plzsaetzl(e).ro ICEEREE) attach(Observer) > «Observer»
3 ’ detach(Observer)
} notify(iA upd%te()
server ServerLogger BattlefieldView
update() update()

> Battlefield <
battlefield.visitFullMap(this);

scene = new Scene(tiles);
stage.setScene(scene);

Observer pattern in Java

In Java, the interface Observer and the class Observable (Subject in
the example) are already provided!

21

General

case: Observer design pattern

i «Subject»
notify() {
for(Observer o : observers) { observer on «Observer»
o.update(); attach(Observer)
} detach(Observer) update()
b notify()
ConcreteSubject subject | ConcreteObserver
state
getstate() observerstate
setState() update()

observerState=subject.getState()

22

