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Chapter X. Design Pattern
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Design pattern

• A design pattern is a reusable

general solution to a software

problem.

• A way to organise the code to

increase flexibility, reusability,

maintainability, ....

• Generally based on inheritance,

subtype polymorphism, and

interfaces.
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Why are design patterns interesting?

• Introduce a common vocabulary among developers: make it easier

to understand the code.

• They are robust solutions, designed over the years by expert

developers.

• Extensible and modular: weak coupling between software

components.
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Classification of design patterns

1. Creational patterns: to build an object when it is complicated

(e.g., to “help” the constructor).

• Factory, AbstractFactory, Builder, ...

• ASCIIBattlefieldBuilder builds Battlefield.

2. Structural patterns: to extend a class with functionalities without

modifying it.

• Adapter, Facade, Decorator, Proxy, Composite, ...

3. Behavioral patterns: to introspect an object and/or customized its

behavior.

• Iterator, Observer, Strategy, Visitor, ...

• TileVisitor allows us to visit the tiles of the battlefield.
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A selection of design patterns

We discuss five design patterns:

1. Builder pattern: used in LOL 2D.

2. Composite pattern: used in Calculator and MC (lab 4).

3. Facade pattern: used in LOL 2D.

4. Visitor pattern: used in LOL 2D.

5. Observer pattern: should be used in LOL 2D.
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Builder Design Pattern
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Builder Pattern: Intent

Separate the construction of a complex object from its represen-

tation so that the same construction process can create different

representations.
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Motivation: Maze Builder
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General case: Builder design pattern
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A restricted usage in LOL 2D

• Constructing the battlefield with an ASCII file is 100 LOC.

• Usage of the builder to separate object construction from the object

itself.

• Currently, no need for a Builder interface.

• Could be added later when required, e.g., suppose you want to

propose a map editor.
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Composite Design Pattern
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Intent

Compose objects into tree structures to represent part-whole hier-

archies. Composite lets clients treat individual objects and com-

positions of objects uniformly.
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Motivation: Calculator

A constant or a composition of constants through Addition are

manipulated uniformly through Expression.
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Motivation: Musical score

A note or a composition of notes through Chord are manipulated

uniformly through Sound.

11



General case: Composite design pattern

12



Facade Design Pattern
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Intent

Provide a unified interface to a set of interfaces in a subsystem.

Facade defines a higher-level interface that makes the subsystem

easier to use.
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Motivation: AI interface

• Each client can implement its own AI, which might be super

sophisticated and involves many components.

• All AIs are used in Client the same way, through the facade AIBase

interface.
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Visitor Design Pattern
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Intent

Represent an operation to be performed on the elements of an

object structure. Visitor lets you define a new operation without

changing the classes of the elements on which it operates.

It is a solution to the Expression problem mentioned in Live coding 4.
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Motivation: Action on battlefield

• An action has an effect on the battlefield (e.g., moving a champion,

attacking a destructible, ...).

• The class Turn has an ArrayList<Action>.

• How to iterate over the list of actions, and know the concrete

subtype?

• The visitor pattern allows us to introspect the actions.
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Motivation: Tiles of the battlefield

• The battlefield is constituted of different kind of tiles, either ground

or destructible.

• The visitor allows us to introspect a destructible tile.
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General case: Visitor design pattern
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Observer Design Pattern
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Intent

Define a one-to-many dependency between objects so that when

one object changes state, all its dependents are notified and up-

dated automatically.
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Motivation: Server / UI communication

Currently, the server directly communicates to the UI.
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Motivation: Server / UI observer

Observer pattern in Java

In Java, the interface Observer and the class Observable (Subject in

the example) are already provided!
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General case: Observer design pattern

22


