
Programming Fundamentals 2

Pierre Talbot

6 May 2021

University of Luxembourg

Chapter X. Design Pattern

0

Design pattern

• A design pattern is a reusable

general solution to a software

problem.

• A way to organise the code to

increase flexibility, reusability,

maintainability,

• Generally based on inheritance,

subtype polymorphism, and

interfaces.

1

Why are design patterns interesting?

• Introduce a common vocabulary among developers: make it easier

to understand the code.

• They are robust solutions, designed over the years by expert

developers.

• Extensible and modular: weak coupling between software

components.

2

Classification of design patterns

1. Creational patterns: to build an object when it is complicated

(e.g., to “help” the constructor).

• Factory, AbstractFactory, Builder, ...

• ASCIIBattlefieldBuilder builds Battlefield.

2. Structural patterns: to extend a class with functionalities without

modifying it.

• Adapter, Facade, Decorator, Proxy, Composite, ...

3. Behavioral patterns: to introspect an object and/or customized its

behavior.

• Iterator, Observer, Strategy, Visitor, ...

• TileVisitor allows us to visit the tiles of the battlefield.

3

A selection of design patterns

We discuss five design patterns:

1. Builder pattern: used in LOL 2D.

2. Composite pattern: used in Calculator and MC (lab 4).

3. Facade pattern: used in LOL 2D.

4. Visitor pattern: used in LOL 2D.

5. Observer pattern: should be used in LOL 2D.

4

Builder Design Pattern

4

Builder Pattern: Intent

Separate the construction of a complex object from its represen-

tation so that the same construction process can create different

representations.

5

Motivation: Maze Builder

6

General case: Builder design pattern

7

A restricted usage in LOL 2D

• Constructing the battlefield with an ASCII file is 100 LOC.

• Usage of the builder to separate object construction from the object

itself.

• Currently, no need for a Builder interface.

• Could be added later when required, e.g., suppose you want to

propose a map editor.

8

Composite Design Pattern

8

Intent

Compose objects into tree structures to represent part-whole hier-

archies. Composite lets clients treat individual objects and com-

positions of objects uniformly.

9

Motivation: Calculator

A constant or a composition of constants through Addition are

manipulated uniformly through Expression.

10

Motivation: Musical score

A note or a composition of notes through Chord are manipulated

uniformly through Sound.

11

General case: Composite design pattern

12

Facade Design Pattern

12

Intent

Provide a unified interface to a set of interfaces in a subsystem.

Facade defines a higher-level interface that makes the subsystem

easier to use.

13

Motivation: AI interface

• Each client can implement its own AI, which might be super

sophisticated and involves many components.

• All AIs are used in Client the same way, through the facade AIBase

interface.
14

Visitor Design Pattern

14

Intent

Represent an operation to be performed on the elements of an

object structure. Visitor lets you define a new operation without

changing the classes of the elements on which it operates.

It is a solution to the Expression problem mentioned in Live coding 4.

15

Motivation: Action on battlefield

• An action has an effect on the battlefield (e.g., moving a champion,

attacking a destructible, ...).

• The class Turn has an ArrayList<Action>.

• How to iterate over the list of actions, and know the concrete

subtype?

• The visitor pattern allows us to introspect the actions.

16

Motivation: Tiles of the battlefield

• The battlefield is constituted of different kind of tiles, either ground

or destructible.

• The visitor allows us to introspect a destructible tile.

17

General case: Visitor design pattern

18

Observer Design Pattern

18

Intent

Define a one-to-many dependency between objects so that when

one object changes state, all its dependents are notified and up-

dated automatically.

19

Motivation: Server / UI communication

Currently, the server directly communicates to the UI.

20

Motivation: Server / UI observer

Observer pattern in Java

In Java, the interface Observer and the class Observable (Subject in

the example) are already provided!

21

General case: Observer design pattern

22

